50 research outputs found

    Identification of Substances of Very High Concern (SVHC) under the 'equivalent level of concern' route (REACH Article 57(f)) - neurotoxicants and immunotoxicants as examples

    Get PDF
    This report analyses whether substances classified for specific target organ toxicity (STOT) according Regulation 1272/2008 on Classification, Labelling and Packaging, in particular those causing immunotoxic or neurotoxic effects, would be eligible to be identified as substances of very high concern (SVHC) under the 'equivalent level of concern' route set out in Article 57(f) of REACH Regulation (EC) No 1907/2006 (Registration, Evaluation, Authorisation and Restriction of Chemicals). This document attempts to identify, characterise and compare the 'level of concern' that exists for immunotoxic and neurotoxic substances with that of CMRs (carcinogens, mutagens and/or reproductive toxicants). The comparison considers the seriousness, irreversibility and delay of hazardous effects, together with other factors, such as the quality of life affected, consequences for society and the possibility to derive a safe concentration.JRC.I.4-Nanobioscience

    Evaluation of the availability and applicability of computational approaches in the safety assessment of nanomaterials: Final report of the Nanocomput project

    Get PDF
    This is the final report of the Nanocomput project, the main aims of which were to review the current status of computational methods that are potentially useful for predicting the properties of engineered nanomaterials, and to assess their applicability in order to provide advice on the use of these approaches for the purposes of the REACH regulation. Since computational methods cover a broad range of models and tools, emphasis was placed on Quantitative Structure-Property Relationship (QSPR) and Quantitative Structure-Activity Relationship (QSAR) models, and their potential role in predicting NM properties. In addition, the status of a diverse array of compartment-based mathematical models was assessed. These models comprised toxicokinetic (TK), toxicodynamic (TD), in vitro and in vivo dosimetry, and environmental fate models. Finally, based on systematic reviews of the scientific literature, as well as the outputs of the EU-funded research projects, recommendations for further research and development were also made. The Nanocomput project was carried out by the European Commission’s Joint Research Centre (JRC) for the Directorate-General (DG) for Internal Market, Industry, Entrepreneurship and SMEs (DG GROW) under the terms of an Administrative Arrangement between JRC and DG GROW. The project lasted 39 months, from January 2014 to March 2017, and was supported by a steering group with representatives from DG GROW, DG Environment and the European Chemicals Agency (ECHA).JRC.F.3-Chemicals Safety and Alternative Method

    Ability of non-animal methods for skin sensitisation to detect pre- and pro-haptens: Report and recommendations of an EURL ECVAM expert meeting

    Get PDF
    Significant progress has been made in the development, validation and regulatory acceptance of in chemico and in vitro test methods for skin sensitisation. Although these methods have been shown to perform relatively well (about 80% accuracy in predicting Local Lymph Node Assay (LLNA) classifications) a concern was raised on the regulatory acceptability of negative results since it was questioned whether these methods are able to predict chemicals that need to be activated to act as sensitisers. In order to inform ongoing discussions at the regulatory level in the EU, EURL ECVAM held an expert meeting on 10-11 November 2015 to analyse the extent to which in chemical and in vitro methods are able to correctly identify chemicals that need to be activated either through abiotic activation (pre-haptens) and/or through biotic (enzyme-mediated) mechanisms (pro-haptens) to acquire skin sensitisation potential. The expert group analysed a list of 127 chemicals, with available LLNA and in vitro data, 22% of which were considered to be pre- and/or pro-haptens. The pre-haptens, constituting the vast majority of chemicals requiring activation, where mostly correctly identified by both the in chemico and in vitro assays whereas the pro-haptens which represent a small subset of sensitising chemicals, were generally identified correctly by one of the cell-based assays. As a result, the expert group recommended that negative in vitro data should be accepted unless there is a compelling scientific argument that a substance is likely to be an exclusively metabolically activated pro-hapten.JRC.I.5-Systems Toxicolog

    Towards a review of the EC Recommendation for a definition of the term "nanomaterial" Part 2: Assessment of collected information concerning the experience with the defintion

    Get PDF
    This report provides the JRC assessment of feedback on the experiences of stakeholders with the EC nanomaterial definition, published in 2011 (EC Recommendation 2011/696/EU). The report is a follow-up report of the previous JRC report (EUR 26567 EN, 2014), which compiled feedback collected by JRC in 2013 and early 2014, partly through a dedicated survey. Based on the current report, JRC will prepare a set of recommendations for the revision of the EC nanomaterial definition, as part of the review process foreseen in the 2011 EC Recommendation.JRC.D.2-Standards for Innovation and sustainable Developmen

    Concern-Driven Integrated Toxicity Testing Strategies for Nanomaterials - Report of the NanoSafety Cluster Working Group 10

    Get PDF
    Bringing together topic-related European Union-(EU)-funded projects, the so-called “NanoSafety Cluster” aims at identifying key areas for further research on risk assessment procedures for nanomaterials (NM). The outcome of NanoSafety Cluster Working Group 10, this commentary presents a vision for concern-driven integrated approaches for the (eco-)toxicological testing and assessment (IATA) of NM. Such approaches should start out by determining concerns, i.e. specific information needs for a given NM based on realistic exposure scenarios. Recognized concerns can be addressed in a set of tiers using standardized protocols for NM preparation and testing. Tier 1 includes determining physico-chemical properties, non-testing (e.g. structure activity relationships) and evaluating existing data. In tier 2, a limited set of in vitro and in vivo tests are performed that can either indicate that the risk of the specific concern is sufficiently known or indicate the need for further testing, including details for such testing. Ecotoxicological testing begins with representative test organisms followed by complex test systems. After each tier, it is evaluated whether the information gained permits assessing the safety of the NM so that further testing can be waived. By effectively exploiting all available information, IATA allow accelerating the risk assessment process and reducing testing costs and animal use (in line with the 3Rs principle implemented in EU Directive 2010/63/EU). Combining material properties, exposure, biokinetics, and hazard data, information gained with IATA can be used to recognize groups of NM based upon similar modes-of-action. Grouping of substances in return should form integral part of the IATA themselves

    The European Chemicals Bureau: an Overview of 15 Years Experience in EU Chemicals Legislation

    Get PDF
    From its creation in 1993, the European Chemicals Bureau (ECB) has played a vital role in the conception, development, implementation and monitoring of European Union (EU) legislation on chemicals and in contributing to the European Commission¿s participation in international chemicals programmes. The ECB has housed much of the European Commission¿s experience, capacity and historical memory in chemical risk assessment and safe chemical management. The contribution of ECB to the drafting, development and implementation of the REACH regulation has been an important one. The provision of scientific/technical expertise to the start-up phase of the newly born European Chemicals Agency (ECHA) has been essential for a swift and effective implementation of REACH. The ECB has contributed to that effort not only by selecting, recruiting and training ECHA staff but also by seconding part of its own key staff to the agency. And finally, during 2008 the ECB is completing the hand-over files and transmitting them to the ECHA, which is taking over responsibility for the operational implementation of EU legislation on chemicals.JRC.I-Institute for Health and Consumer Protection (Ispra

    ITS-NANO - Prioritising nanosafety research to develop a stakeholder driven intelligent testing strategy

    Get PDF
    Background To assess the risk of all nanomaterials (NMs) on a case-by-case basis is challenging in terms of financial, ethical and time resources. Instead a more intelligent approach to knowledge gain and risk assessment is required. Methods A framework of future research priorities was developed from the accorded opinion of experts covering all major stake holder groups (government, industry, academia, funders and NGOs). It recognises and stresses the major topics of physicochemical characterisation, exposure identification, hazard identification and modelling approaches as key components of the current and future risk assessment of NMs. Results The framework for future research has been developed from the opinions of over 80 stakeholders, that describes the research priorities for effective development of an intelligent testing strategy (ITS) to allow risk evaluation of NMs. In this context, an ITS is a process that allows the risks of NMs to be assessed accurately, effectively and efficiently, thereby reducing the need to test NMs on a case-by-case basis. For each of the major topics of physicochemical characterisation, exposure identification, hazard identification and modelling, key-priority research areas are described via a series of stepping stones, or hexagon diagrams structured into a time perspective. Importantly, this framework is flexible, allowing individual stakeholders to identify where their own activities and expertise are positioned within the prioritisation pathway and furthermore to identify how they can effectively contribute and structure their work accordingly. In other words, the prioritisation hexagon diagrams provide a tool that individual stakeholders can adapt to meet their own particular needs and to deliver an ITS for NMs risk assessment. Such an approach would, over time, reduce the need for testing by increasing the reliability and sophistication of in silico approaches. The manuscript includes an appraisal of how this framework relates to the current risk assessment approaches and how future risk assessment could adapt to accommodate these new approaches. A full report is available in electronic format (pdf) at http://www.nano.hw.ac.uk/research-projects/itsnano.html webcite. Conclusion ITS-NANO has delivered a detailed, stakeholder driven and flexible research prioritisation (or strategy) tool, which identifies specific research needs, suggests connections between areas, and frames this in a time-perspective

    Development of options for changing REACH requirements for nanomaterials and assessment of their consequences for industry, consumer human health and the environment

    No full text
    This feature article discusses the work of the NANO Support Project in developing options for changing the requirements of the E.U. REACH Regulation for nanomaterials and assessing the consequences of these options for industry, consumer human health and the environment.JRC.I.4-Nanobioscience
    corecore